a cylindrical-shaped water storage tank with diameter 60 ft and height 20 ft needs to be painted on the outside. if the tank is on the ground, find the surface area that needs painting

Respuesta :

Answer:

6600ft.² is the correct answer.

Step-by-step explanation:

Given that,

  • Diameter of the Cylindrical tank, d = 60 ft
  • Height of the Cylindrical tank, h = 20 ft
  • Radius of the Cylindrical tank, r = 30ft.

[tex] \: [/tex]

To Find:

  • Area of the Cylindrical tank to be painted.

[tex] \: [/tex]

Solution:

Area of Cylindrical tank to be painted = CSA of the Cylindrical tank + Area of the circle

[tex] \star \quad{ \boxed{ \green{CSA_{(Cylinder)} = 2 \pi r h }}} \quad \star[/tex]

[tex]\star \quad{ \boxed{ \green{Area_{(Circle)} = \pi {r}^{2} }}} \quad \star[/tex]

[tex] \longrightarrow \: 2\pi rh \: + \pi {r}^{2} [/tex]

[tex]\longrightarrow \: \pi r(2h + r)[/tex]

[tex]\longrightarrow \: \frac{22}{7} \times 30 \times(2\times20+30) [/tex]

[tex]\longrightarrow \: \frac{660}{7} \times (40 + 30)[/tex]

[tex]\longrightarrow \: \frac{660}{7} \times 70 [/tex]

[tex]\longrightarrow \: 660 \times 10[/tex]

[tex]\longrightarrow \: 6600 {ft.}^{2} [/tex]

Hence, Area of the Cylindrical tank to be painted is 6600ft.²

_____________________

Additional Information:

[tex]\footnotesize{\boxed{ \begin{array}{cc} \small\underline{\frak{ \red{More \: Formulae}}} \\ \\ \bigstar \: \bf{CSA_{(cylinder)} = 2\pi \: rh}\\ \\ \bigstar \: \bf{Volume_{(cylinder)} = \pi {r}^{2} h}\\ \\ \bigstar \: \bf{TSA_{(cylinder)} = 2\pi \: r(r + h)}\\ \\ \bigstar \: \bf{CSA_{(cone)} = \pi \: r \: l}\\ \\ \bigstar \: \bf{TSA_{(cone)} = \pi \: r \: (l + r)}\\ \\ \bigstar \: \bf{Volume_{(sphere)} = \dfrac{4}{3}\pi {r}^{3} }\\ \\ \bigstar \: \bf{Volume_{(cube)} = {(side)}^{3} }\\ \\ \bigstar \: \bf{CSA_{(cube)} = 4 {(side)}^{2} }\\ \\ \bigstar \: \bf{TSA_{(cube)} = 6 {(side)}^{2} }\\ \\ \bigstar \: \bf{Volume_{(cuboid)} = lbh}\\ \\ \bigstar \: \bf{CSA_{(cuboid)} = 2(l + b)h}\\ \\ \bigstar \: \bf{TSA_{(cuboid)} = 2(lb +bh+hl )}\\ \: \end{array} }}[/tex]