Respuesta :
Answer:
6600ft.² is the correct answer.
Step-by-step explanation:
Given that,
- Diameter of the Cylindrical tank, d = 60 ft
- Height of the Cylindrical tank, h = 20 ft
- Radius of the Cylindrical tank, r = 30ft.
[tex] \: [/tex]
To Find:
- Area of the Cylindrical tank to be painted.
[tex] \: [/tex]
Solution:
Area of Cylindrical tank to be painted = CSA of the Cylindrical tank + Area of the circle
[tex] \star \quad{ \boxed{ \green{CSA_{(Cylinder)} = 2 \pi r h }}} \quad \star[/tex]
[tex]\star \quad{ \boxed{ \green{Area_{(Circle)} = \pi {r}^{2} }}} \quad \star[/tex]
[tex] \longrightarrow \: 2\pi rh \: + \pi {r}^{2} [/tex]
[tex]\longrightarrow \: \pi r(2h + r)[/tex]
[tex]\longrightarrow \: \frac{22}{7} \times 30 \times(2\times20+30) [/tex]
[tex]\longrightarrow \: \frac{660}{7} \times (40 + 30)[/tex]
[tex]\longrightarrow \: \frac{660}{7} \times 70 [/tex]
[tex]\longrightarrow \: 660 \times 10[/tex]
[tex]\longrightarrow \: 6600 {ft.}^{2} [/tex]
Hence, Area of the Cylindrical tank to be painted is 6600ft.²
_____________________
Additional Information:
[tex]\footnotesize{\boxed{ \begin{array}{cc} \small\underline{\frak{ \red{More \: Formulae}}} \\ \\ \bigstar \: \bf{CSA_{(cylinder)} = 2\pi \: rh}\\ \\ \bigstar \: \bf{Volume_{(cylinder)} = \pi {r}^{2} h}\\ \\ \bigstar \: \bf{TSA_{(cylinder)} = 2\pi \: r(r + h)}\\ \\ \bigstar \: \bf{CSA_{(cone)} = \pi \: r \: l}\\ \\ \bigstar \: \bf{TSA_{(cone)} = \pi \: r \: (l + r)}\\ \\ \bigstar \: \bf{Volume_{(sphere)} = \dfrac{4}{3}\pi {r}^{3} }\\ \\ \bigstar \: \bf{Volume_{(cube)} = {(side)}^{3} }\\ \\ \bigstar \: \bf{CSA_{(cube)} = 4 {(side)}^{2} }\\ \\ \bigstar \: \bf{TSA_{(cube)} = 6 {(side)}^{2} }\\ \\ \bigstar \: \bf{Volume_{(cuboid)} = lbh}\\ \\ \bigstar \: \bf{CSA_{(cuboid)} = 2(l + b)h}\\ \\ \bigstar \: \bf{TSA_{(cuboid)} = 2(lb +bh+hl )}\\ \: \end{array} }}[/tex]