Respuesta :
HI THERE!
[tex] \rm \color{lime}(2,10)[/tex]
step-by-step explanation:
[tex]\rm \color{lime}y = - {x}^{2} + 4x + 6[/tex]
- identify the coefficients
[tex]\rm \color{lime}a = - 1,b = 4[/tex]
- substitute the coefficient into the expression
- find the x-coordinate of the vertex by substituting a = - 1 and b=4
- [tex] \tt \tiny \: x = - \frac{b}{29} [/tex]
[tex]\rm \color{lime}x = - \frac{4}{2x( - 1)} [/tex]
- solve the equation for X
- find the y-coordinate of the vertex by evaluating the function for x = 2
[tex]\rm \color{lime}y = - {x}^{2} + 4x + 6,x = 2[/tex]
- calculate the function value for x = 2
[tex]\rm \color{lime}y = 10[/tex]
- since the value of the function is 10 for x = 2 the vertex of the graph of the quadratic function is a (2,10)
[tex] = \rm \color{hotpink} (2,10)[/tex]
hope it helps
Answer:
y = - (x - 2)² + 10
Step-by-step explanation:
the equation of a parabola in vertex form is
y = a(x - h)² + k
where (h, k ) are the coordinates of the vertex and a is a multiplier
To obtain this form use the method of completing the square
y = - x² + 4x + 6 ( factor out - 1 from the first 2 terms )
y = - (x² - 4x) + 6
To complete the square
add/subtract ( half the coefficient of the x- term )² to x² - 4x
y = - (x² + 2(- 2) + 4 - 4) + 6
y = - (x - 2)² + 4 + 6
y = - (x - 2)² + 10 ← in vertex form