Respuesta :
Answer:
[tex] \pink{ \rm{SOLUTION:-}}[/tex]
[tex] \pink{ \rm{Here,}}[/tex]
[tex]\boxed{162}[/tex] can be a perfect square if the factor [tex]\boxed{2}[/tex] is a paired.
Hence,[tex]\boxed{162×2}[/tex],will be a perfect square.
[tex]: \implies{324 = {3}^{2} \times {3}^{2} \times {2}^{2} }[/tex]
Hence,the square root is [tex]3×3×2,i.e. 18[/tex]
[tex]{\rm{162 \: must \: be \: multiplied \: by \: 2 \: to \: make \: it \: a \: perfect \: square.}}[/tex]
Answer:
2
Step-by-step explanation:
[tex]\\ \rm\Rrightarrow \sqrt{162}[/tex]
[tex]\\ \rm\Rrightarrow \sqrt{2\times 3\times 3\times 3\times 3}[/tex]
- 4 3's are there which will cancel out of root over
Now there is one 2 left .
We need another 2
So we get
[tex]\\ \rm\Rrightarrow 2(3)(3)[/tex]
- That perfect square is 18^2=324