Respuesta :
Answer:
No real zeros for the function.
Explanation:
- zero of a function f, if f(r) = 0
solve:
[tex]\sf y=(x-20)^2 +5[/tex]
so when f(y) = 0
[tex]\hookrightarrow \sf (x-20)^2 +5 = 0[/tex]
[tex]\hookrightarrow \sf (x-20)^2 = -5[/tex]
[tex]\hookrightarrow \sf (x-20) = \sqrt{-5}[/tex]
[tex]\hookrightarrow \sf x = \pm \sqrt{-5} +20[/tex]
[tex]\hookrightarrow \sf x = \sqrt{-5} +20, \ \sf x = -\sqrt{-5} +20[/tex]
check:
[tex]\hookrightarrow f \sf (\sqrt{-5} +20) = Not \ applicable[/tex], [tex]f \sf (-\sqrt{-5} +20) = Not \ applicable[/tex]

Answer:
No real zeros.
Step-by-step explanation:
Given... y = [tex](x-20)^{2} +5[/tex]
Since above equation has no real real value, there are no zeros.
But complex zeros are:
[tex](x-20)^{2} +5=0[/tex]
[tex](x-20)^{2} =-5[/tex]
I was late so mark the person above me Brainliest!