Respuesta :

Answer:

No real zeros for the function.

Explanation:

  • zero of a function f, if f(r) = 0

solve:

[tex]\sf y=(x-20)^2 +5[/tex]

so when f(y) = 0

[tex]\hookrightarrow \sf (x-20)^2 +5 = 0[/tex]

[tex]\hookrightarrow \sf (x-20)^2 = -5[/tex]

[tex]\hookrightarrow \sf (x-20) = \sqrt{-5}[/tex]

[tex]\hookrightarrow \sf x = \pm \sqrt{-5} +20[/tex]

[tex]\hookrightarrow \sf x = \sqrt{-5} +20, \ \sf x = -\sqrt{-5} +20[/tex]

check:

[tex]\hookrightarrow f \sf (\sqrt{-5} +20) = Not \ applicable[/tex], [tex]f \sf (-\sqrt{-5} +20) = Not \ applicable[/tex]

Ver imagen fieryanswererft
lvvies

Answer:

No real zeros.

Step-by-step explanation:

Given... y = [tex](x-20)^{2} +5[/tex]

Since above equation has no real real value, there are no zeros.

But complex zeros are:

         [tex](x-20)^{2} +5=0[/tex]

          [tex](x-20)^{2} =-5[/tex]

I was late so mark the person above me Brainliest!