Solve the equation on the
interval [0, 27).
4(sin x)2 - 2 = 0
X
.
7
[?] []? []T
x =
4) 4 4 4
Write your answer in increasing order. Enter the
number that belongs in the green box.
Enter

Solve the equation on the interval 0 27 4sin x2 2 0 X 7 T x 4 4 4 4 Write your answer in increasing order Enter the number that belongs in the green box Enter class=

Respuesta :

Answer:

see explanation

Step-by-step explanation:

note that (sinx)² = sin²x

4sin²x - 2 = 0 ( add 2 to both sides )

4sin²x = 2 ( divide both sides by 4 )

sin²x = [tex]\frac{2}{4}[/tex] = [tex]\frac{1}{2}[/tex] ( take square root of both sides )

sinx = ± [tex]\sqrt{\frac{1}{2} }[/tex] = ± [tex]\frac{1}{\sqrt{2} }[/tex]

sinx = [tex]\frac{1}{\sqrt{2} }[/tex] ( sinx > 0 , then x is in 1st/2nd quadrants )

x = [tex]\frac{\pi }{4}[/tex] , π - [tex]\frac{\pi }{4}[/tex] = [tex]\frac{3\pi }{4}[/tex]

sinx = - [tex]\frac{1}{\sqrt{2} }[/tex] ( sinx < 0 , then x is in 3rd/4th quadrants )

x = π + [tex]\frac{\pi }{4}[/tex] = [tex]\frac{5\pi }{4}[/tex] , 2π - [tex]\frac{\pi }{4}[/tex] = [tex]\frac{7\pi }{4}[/tex]

solutions are

[tex]\frac{\pi }{4}[/tex] , [tex]\frac{3\pi }{4}[/tex] , [tex]\frac{5\pi }{4}[/tex] , [tex]\frac{7\pi }{4}[/tex] in the interval [ 0, 2π )