Find the derivative of

[tex]\\ \rm\Rrightarrow y=\dfrac{sinx+cosx}{sinx-cosx}[/tex]

Proper explanation is mandatory


Note:-
Spams/sHort/wrong answers will be deleted on the spot .

Respuesta :

Answer:

y' = 1 / sinxcosx

Step-by-step explanation:

Given :

y = sinx + cosx / sinx - cosx

Applying quotient rule :

y' = [(sinx - cosx)(cosx - sinx) - (sinx + cosx)(cosx + sinx)] / (sinx -

cosx)²

y' = [sinxcosx - cos²x - sin²x + sinxcosx - (sinxcosx + cos²x + sin²x + sinxcosx)] / (sinx - cosx)²

y' = 2sinxcosx - 2sinxcosx - 2cos²x - 2sin²x / (sinx -cosx)²

y' = -2(sin²x + cos²x) / (sinx - cosx)²

y' = -2 / (sinx - cosx)²

y' = -2 / sin²x - 2sinxcosx + cos²x

y' = -2 / -2sinxcosx

y' = 1 / sinxcosx  [⇒ Final answer]

Answer:

⇒[tex]y'=-\frac{2}{(six-cosx)^{2} }[/tex]

Step-by-step explanation:

⇒Answer in the attachment.

Ver imagen Nepalieducation
Ver imagen Nepalieducation