pls help. i know the formulas, but i messed up my math.

[tex]\bold{\huge{\underline{ Solution }}}[/tex]
Here,
The dimension of larger cuboid are
We know that,
Lateral surface area of cuboid
[tex]\bold{\red{ = 2( lb + bh + hl)}}[/tex]
Subsitute the required values,
[tex]\sf{ = 2[(7)(7) + (7)(12) +(7)(12) ]}[/tex]
[tex]\sf{ = 2[ 49 + 84 ]}[/tex]
[tex]\sf{ = 2[ 49 + 168 ]}[/tex]
[tex]\sf{ = 2[ 217 ]}[/tex]
[tex]\bold{ = 434 cm^{2}}[/tex]
We have to find the lateral surface area of smaller cuboid
Therefore,
Lateral surface area of smaller cuboid
[tex]\sf{ = 2[(2)(7) + (7)(2) +(2)(2) ]}[/tex]
[tex]\sf{ = 2[ 14 + 14 + 4 ]}[/tex]
[tex]\sf{ = 2[ 28 + 4 ]}[/tex]
[tex]\sf{ = 2[ 32]}[/tex]
[tex]\bold{ = 64 cm^{2}}[/tex]
The common base area of both the cuboids
[tex]\sf{ = lb }{\sf{ + lb}}[/tex]
[tex]\sf{ = 14 + }{\sf{ 14}}[/tex]
[tex]\bold{ = 28 cm^{2}}[/tex]
The total surface area of the given composite figure
= SA of larger cuboid + SA of smaller cuboid - common base area
Subsitute the required values,
[tex]\sf{ = 434 + 64 - 28 }[/tex]
[tex]\sf{ = 498 - 28 }[/tex]
[tex]\bold{ = 470cm^{2}}[/tex]
Hence, The surface area of composite figure is 470 cm² .
Answer:
470cm²
Step-by-step explanation:
SA= (12*7)*4+(7*7)*2+(2*2)*2+(7*2)*2
=336+98+8+28
= 470 cm²
Therefore, the surface ares is 470 cm².
~