Respuesta :
Solution:
We know that:
[tex]1. \space\ V_{Rectangular \space\ prism} = 10 \text\] units^{3}\\\\2. \space\ L_{Small \space\ cube} = \frac{1}{2} \space\ units\\\\ 3. \space\ V_{Small \space\ cube} = L ^{3}[/tex]
Step-1: Find the volume of the small cube.
[tex]V_{Small \space\ cube} = L ^{3}[/tex]
[tex]V_{Small \space\ cube} = (\frac{1}{2}) ^{3}[/tex]
[tex]V_{Small \space\ cube} = (\frac{1}{2}) (\frac{1}{2}) (\frac{1}{2})[/tex]
[tex]V_{Small \space\ cube} = \frac{1}{8} \space\ units^{3}[/tex]
Step-2: Divide.
[tex]\frac{10}{\frac{1}{8} }\\\\ \Rrightarrow(10)(8)\\ \\ \Rrightarrow 80[/tex]
Hence, 80 cubes can be fit in the rectangular prism.
volume of rectangular prism = 10 units³
volume of each cube = [tex]\frac{1}{2} \times\frac{1}{2} \times\frac{1}{2} = \frac{1}{8} units^3[/tex]
required cubes = [tex]\frac{10}{ \frac{1}{8} }= 80[/tex]