contestada

A rectangular prism with a volume of 10 cubic units is filled with cubes with side length of 1/2 unit

Respuesta :

Solution:

We know that:

[tex]1. \space\ V_{Rectangular \space\ prism} = 10 \text\] units^{3}\\\\2. \space\ L_{Small \space\ cube} = \frac{1}{2} \space\ units\\\\ 3. \space\ V_{Small \space\ cube} = L ^{3}[/tex]

Step-1: Find the volume of the small cube.

[tex]V_{Small \space\ cube} = L ^{3}[/tex]

[tex]V_{Small \space\ cube} = (\frac{1}{2}) ^{3}[/tex]

[tex]V_{Small \space\ cube} = (\frac{1}{2}) (\frac{1}{2}) (\frac{1}{2})[/tex]

[tex]V_{Small \space\ cube} = \frac{1}{8} \space\ units^{3}[/tex]

Step-2: Divide.

[tex]\frac{10}{\frac{1}{8} }\\\\ \Rrightarrow(10)(8)\\ \\ \Rrightarrow 80[/tex]

Hence, 80 cubes can be fit in the rectangular prism.

volume of rectangular prism = 10 units³

volume of each cube = [tex]\frac{1}{2} \times\frac{1}{2} \times\frac{1}{2} = \frac{1}{8} units^3[/tex]

required cubes = [tex]\frac{10}{ \frac{1}{8} }= 80[/tex]