Respuesta :

[tex]\\ \rm\Rrightarrow \sqrt{9-4\sqrt{5}}+\sqrt{5}[/tex]

[tex]\\ \rm\Rrightarrow \sqrt{9-8.8}+2.2[/tex]

[tex]\\ \rm\Rrightarrow \sqrt{0.2}+2.2[/tex]

[tex]\\ \rm\Rrightarrow 0.3+2.2[/tex]

[tex]\\ \rm\Rrightarrow 2.5[/tex]

[tex]\\ \rm\Rrightarrow 2(approx)[/tex]

Answer:

Algebraic "proof" that the solution is 2:

[tex]\sqrt{9-4\sqrt{5} }\:+\sqrt{5}[/tex]

[tex]=\sqrt{4-4\sqrt{5}+5 }\:+\sqrt{5}[/tex]

[tex]=\sqrt{2^2-4\sqrt{5}+(\sqrt{5})^2 }\:+\sqrt{5}[/tex]

[tex]=\sqrt{(2-\sqrt{5})^2 }\:+\sqrt{5}[/tex]

[tex]=(2-\sqrt{5})+\sqrt{5}[/tex]

[tex]=2[/tex]

However, this is not the correct mathematical solution to the problem.

The order of operations for [tex]\sqrt{(2-\sqrt{5})^2 }[/tex] dictate that the operation inside the parentheses must be carried out first.  

As [tex]2-\sqrt{5} < 0[/tex], then [tex](2-\sqrt{5})^2[/tex] will always be positive.

If  [tex](2-\sqrt{5})^2[/tex] is always positive, then [tex]\sqrt{(2-\sqrt{5})^2 }[/tex] will always be positive.

As √5 > 2 and [tex]\sqrt{(2-\sqrt{5})^2 } > 0[/tex] then [tex]\sqrt{(2-\sqrt{5})^2 }\:+\sqrt{5} > 2[/tex]

So mathematically, the actual solution to the expression is 2.47 (nearest hundredth) not 2.