Respuesta :

Answer:

  • VX = V1·R2/(R2 +R1(1 +AVOL))
  • VX ≈ -99.0001 μV
  • Vout = -V1·R2·AVOL/(R2 +R1(1 +AVOL))
  • Vout ≈ 0.990001 V

Explanation:

It is useful to consider the voltage at X to be the superposition of two voltages divided by the R1/R2 voltage divider. It is also helpful to remember that OUT = -VX·AVOL.

__

a)

  [tex]V_X=\dfrac{V_1\cdot R_2+V_{out}\cdot R_1}{R_1+R_2}=\dfrac{V_1\cdot R_2-V_X\cdot A_{VOL}\cdot R_1}{R_1+R_2}\\\\V_X(R_1(1+A_{VOL})+R_2)=V_1\cdot R_2\\\\\boxed{V_X=V_1\dfrac{R_2}{R_2+R_1(1+A_{VOL})}}[/tex]

__

b)

Filling in the given numbers, we find VX to be ...

  [tex]V_X=-0.01V\cdot\dfrac{400000}{400000+4000(1+10000)}=-0.01V\cdot\dfrac{100}{10101}\\\\\boxed{V_X=\dfrac{-1}{10101}V\approx-99.0001\mu V}[/tex]

__

c)

As we said at the beginning, OUT = -VX·AVOL. Multiplying the expression for VX by -AVOL, we get ...

  [tex]\boxed{V_{out}=-V_1\cdot\dfrac{A_{VOL}\cdot R_2}{R_2+R_1(1+A_{VOL})}}[/tex]

__

d)

As with the expression, the output voltage is found by multiplying VX by -AVOL:

  [tex]V_{out}=\dfrac{(-1)(-10000)}{10101}V\\\\\boxed{V_{out}=\dfrac{10000}{10101}V\approx 0.990001V}[/tex]