Respuesta :

Solution:

We know that:

  • 9x + 4 and 3x + 16 are equivalent because of alternate inner angles.

This means that:

  • [tex]9x + 4 = 3x + 16[/tex]

Step-by step calculations:

Subtract 3x both sides.

  • [tex]9x + 4 = 3x + 16[/tex]
  • [tex]9x - 3x + 4 = 3x - 3x + 16[/tex]
  • ⇒ [tex]6x + 4 = 16[/tex]

Subtract 4 both sides.

  • ⇒ [tex]6x + 4 = 16[/tex]
  • ⇒ [tex]6x + 4 - 4 = 16 - 4[/tex]
  • ⇒ [tex]6x = 12[/tex]

Divide 6 both sides.

  • ⇒ [tex]\frac{6x}{6} = \frac{12}{6}[/tex]
  • [tex]x = 2[/tex]

*Note that:-

  • 9x+4= 3x+16 [Alternate interior angles]

Using this equation we will solve for x and then find each angle...

[tex]\red{ \rule{35pt}{2pt}} \orange{ \rule{35pt}{2pt}} \color{yellow}{ \rule{35pt} {2pt}} \green{ \rule{35pt} {2pt}} \blue{ \rule{35pt} {2pt}} \purple{ \rule{35pt} {2pt}}[/tex]

[tex]9x + 4 = 3x + 16 \\ 9x + 4 - 3x = 16 \\ 9x - 3x = 16 - 4 \\ 6x = 12 \\ x = 2[/tex]

Now,

[tex]\large{|\underline{\mathsf{\red{1}\blue{ ^{s} }\orange{^{t} }\pink{ \: }\blue{a}\purple{n}\green{g}\red{l}\blue{e}\orange{ \: }\green{↯}\red{}\purple{}\pink{}}}}[/tex]

[tex] \pmb{9x + 4} \\ \pmb{9 \times 2 + 4} \\ \pmb{18 + 4} \\ \boxed{ \tt \: ∠1 = 22 \degree }[/tex]

[tex]\large{|\underline{\mathsf{\red{2}\blue{ ^{n} }\orange{^{d} }\pink{ \: }\blue{a}\purple{n}\green{g}\red{l}\blue{e}\orange{ \: }\green{↯}\red{}\purple{}\pink{}}}}[/tex]

[tex] \pmb{3x + 16} \\ \pmb{3 \times 2 + 16} \\ \pmb{6 + 16} \\ \boxed{ \tt \: ∠2 = 22 \degree }[/tex]