I need help!! I will give 5.0 star

So, here we need to differentiate tan³[tex](\theta)[/tex], wr.t.[tex]\theta[/tex], but let's recall some identities which will be very useful in this question :
Coming back on the question, consider :
[tex]{:\implies \quad \sf \dfrac{d}{d\theta}\{\tan^{3}(\theta)\}}[/tex]
[tex]{:\implies \quad \sf 3\tan^{3-1}(\theta)\dfrac{d}{d\theta}\{\tan (\theta)\}}[/tex]
[tex]{:\implies \quad \sf 3\tan^{2}(\theta)\sec^{2}(\theta)}[/tex]
Using the identity ;
[tex]{:\implies \quad \sf 3\tan^{2}(\theta)\{1+\tan^{2}(\theta)\}}[/tex]
[tex]{:\implies \quad \sf 3\tan^{2}(\theta)+3tan^{4}(\theta)}[/tex]
[tex]{:\implies \quad \sf 3\tan^{4}(\theta)+3\{\sec^{2}(\theta)-1\}}[/tex]
[tex]{:\implies \quad \boxed{\bf 3\tan^{4}(\theta)+3\sec^{2}(\theta)-3}}[/tex]
Hence, Proved