NO LINKS!!!
Find the indicated side for each triangle below:

Problem 5
Apply the Law of Sines
s/sin(S) = r/sin(R)
s/sin(78) = 10/sin(48)
s = sin(78)*10/sin(48)
s = 13.162274
=============================================================
Problem 6
Use the Law of Sines here as well.
x/sin(X) = y/sin(Y)
x/sin(53) = 6/sin(22)
x = sin(53)*6/sin(22)
x = 12.791588
Answer:
Sine Rule
[tex]\sf \dfrac{a}{sinA}=\dfrac{b}{sinB}=\dfrac{c}{sinB}[/tex]
(where A, B and C are the angles and a, b and c are the sides opposite the angles)
Question 5
[tex]\sf \implies \dfrac{s}{sin(78)}=\dfrac{10}{sin(48)}[/tex]
[tex]\sf \implies s=\dfrac{10sin(78)}{sin(48)}[/tex]
[tex]\sf \implies s=13.16227426[/tex]
s = 13.2 (nearest tenth)
Question 6
[tex]\sf \implies \dfrac{x}{sin(53)}=\dfrac{6}{sin(22)}[/tex]
[tex]\sf \implies x=\dfrac{6sin(53)}{sin(22)}[/tex]
[tex]\sf \implies x=12.79158761[/tex]
x = 12.8 (nearest tenth)