Respuesta :

Problem 5

Apply the Law of Sines

s/sin(S) = r/sin(R)

s/sin(78) = 10/sin(48)

s = sin(78)*10/sin(48)

s = 13.162274

Answer:    13.162274 approximately

=============================================================

Problem 6

Use the Law of Sines here as well.

x/sin(X) = y/sin(Y)

x/sin(53) = 6/sin(22)

x = sin(53)*6/sin(22)

x = 12.791588

Answer:    12.791588 approximately

Answer:

Sine Rule

[tex]\sf \dfrac{a}{sinA}=\dfrac{b}{sinB}=\dfrac{c}{sinB}[/tex]

(where A, B and C are the angles and a, b and c are the sides opposite the angles)

Question 5

[tex]\sf \implies \dfrac{s}{sin(78)}=\dfrac{10}{sin(48)}[/tex]

[tex]\sf \implies s=\dfrac{10sin(78)}{sin(48)}[/tex]

[tex]\sf \implies s=13.16227426[/tex]

s = 13.2 (nearest tenth)

Question 6

[tex]\sf \implies \dfrac{x}{sin(53)}=\dfrac{6}{sin(22)}[/tex]

[tex]\sf \implies x=\dfrac{6sin(53)}{sin(22)}[/tex]

[tex]\sf \implies x=12.79158761[/tex]

x = 12.8 (nearest tenth)