Respuesta :

Hemo4

Answer: C) [tex]f^{-1}(x)=3-7x[/tex]

Step-by-step explanation:

When solving for an inverse of a function replace f(x) with x and replace the original x with y.

[tex]f(x) = \frac{3-x}{7} \\x=\frac{3-y}{7}[/tex]

Now solve for y

[tex]x=\frac{3-y}{7} \\(7)x=(\frac{3-y}{7}) (7)\\7x=3-y\\7x+y=3-y+y\\7x+y=3\\7x-7x+y=3-7x\\y=3-7x[/tex]

Replace y with the [tex]f^{-1}(x)[/tex]