What is the Lowest Value? 0, 1, 6, 7, 1 What is the Lower Quartile? 3, 1 , 1.5, 2 What is the Median? 4, 4.5, 3.5, 6, What is the Upper Quartile? 6.5, 6, 7, 4.5, What is the Highest Value? 3, 6.5, 6, 7

Answer:
lowest value-0
lower quartile(or first quartile)-1.25
median-4.25
upper quartile-6.75
highest value-7
Step-by-step explanation:
lowest value=is the lowest number of a set
lower quartile(first quartile)=the number between the median and th minimum or if there is a even amount of values you find the mean of the values between the minimum and maximum
median=the middle number of a set
upper quartile(third quartile)=the middle number between the median and the maximum.
highest value(maximum)=the highest number in the set
Answer:
Lowest Value = 0
Lower Quartile = 1.5
Median = 4.5
Lower Quartile = 6.5
Highest Value = 7
Step-by-step explanation:
Given values:
0, 1, 2, 3, 6, 6, 7, 7
Before determining the quartiles, place the values of the data set in order of size.
To find the position of the lower quartile (Q1) first work out n/4 (where n is the number of data values in the set).
If n/4 is a whole number, then the lower quartile is halfway between the values in this position and the position above.
⇒ 8/4 = 2, so the Lower Quartile is halfway between the 2nd and 3rd values.
⇒ Lower Quartile = 1.5
The median is the value in the middle of the data set when all the data values are placed in order of size.
To find the position of the median (Q2) first work out n/2.
If n/2 is a whole number, then the median is halfway between the values in this position and the position above.
⇒ Median = 4.5
To find the position of the upper quartile (Q3) first work out 3n/4 (where n is the number of data values in the set).
If 3n/4 is a whole number, then the lower quartile is halfway between the values in this position and the position above.
⇒ (3 x 8)/4 = 6, so the Lower Quartile is halfway between the 6th and 7th values.
⇒ Lower Quartile = 1.5
The lowest value is the smallest value in the data set = 0
The highest value is the largest value in the data set = 7