Respuesta :
Answer:
[tex]A=\frac{\pi}{8}+\frac{n\pi}{4}or\ A=\frac{\pi}{2}+n\pi[/tex]
Step-by-step explanation:
Find angles
[tex]cos3A+cos5A=0[/tex]
________________________________________________________
Transform the expression using the sum-to-product formula
[tex]2cos(\frac{3A+5A}{2})cos(\frac{3A-5A}{2})=0[/tex]
________________________________________________________
Combine like terms
[tex]2cos(\frac{8A}{2})cos(\frac{3A-5A}{2})=0\\\\ 2cos(\frac{8A}{2})cos(\frac{-2A}{2})=0[/tex]
________________________________________________________
Divide both sides of the equation by the coefficient of variable
[tex]cos(\frac{8A}{2})cos(\frac{-2A}{2})=0[/tex]
________________________________________________________
Apply zero product property that at least one factor is zero
[tex]cos(\frac{8A}{2})=0\ or\ cos(\frac{-2A}{2})=0[/tex]
________________________________________________________
Cos (8A/2) = 0:
Cross out the common factor
[tex]cos\ 4A=0[/tex]
________________________________________________________
Solve the trigonometric equation to find a particular solution
[tex]4A=\frac{\pi}{2}or\ 4A=\frac{3\pi}{2}[/tex]
________________________________________________________
Solve the trigonometric equation to find a general solution
[tex]4A=\frac{\pi}{2}+2n\pi \ or\\ \\ 4A=\frac{3 \pi}{2}+2n \pi\\ \\A=\frac{\pi}{8}+\frac{n \pi}{4\\}[/tex]
________________________________________________________
cos(-2A/2) = 0
Reduce the fraction
[tex]cos(-A)=0[/tex]
________________________________________________________
Simplify the expression using the symmetry of trigonometric function
[tex]cosA=0[/tex]
________________________________________________________
Solve the trigonometric equation to find a particular solution
[tex]A=\frac{\pi }{2}\ or\ A=\frac{3 \pi}{2}[/tex]
________________________________________________________
Solve the trigonometric equation to find a general solution
[tex]A=\frac{\pi}{2}+2n\pi\ or\ A=\frac{3\pi}{2}+2n\pi,n\in\ Z[/tex]
________________________________________________________
Find the union of solution sets
[tex]A=\frac{\pi}{2}+n\pi[/tex]
________________________________________________________
A = π/8 + nπ/4 or A = π/2 + nπ, n ∈ Z
Find the union of solution sets
[tex]A=\frac{\pi}{8}+\frac{n\pi}{4}\ or\ A=\frac{\pi}{2}+n\pi ,n\in Z[/tex]
I hope this helps you
:)