Respuesta :

Answer:

[tex]A=\frac{\pi}{8}+\frac{n\pi}{4}or\ A=\frac{\pi}{2}+n\pi[/tex]

Step-by-step explanation:

Find angles

[tex]cos3A+cos5A=0[/tex]

________________________________________________________

Transform the expression using the sum-to-product formula

[tex]2cos(\frac{3A+5A}{2})cos(\frac{3A-5A}{2})=0[/tex]

________________________________________________________

Combine like terms

[tex]2cos(\frac{8A}{2})cos(\frac{3A-5A}{2})=0\\\\ 2cos(\frac{8A}{2})cos(\frac{-2A}{2})=0[/tex]

________________________________________________________

Divide both sides of the equation by the coefficient of variable

[tex]cos(\frac{8A}{2})cos(\frac{-2A}{2})=0[/tex]

________________________________________________________

Apply zero product property that at least one factor is zero

[tex]cos(\frac{8A}{2})=0\ or\ cos(\frac{-2A}{2})=0[/tex]

________________________________________________________

Cos (8A/2) = 0:

Cross out the common factor

[tex]cos\ 4A=0[/tex]

________________________________________________________

Solve the trigonometric equation to find a particular solution

[tex]4A=\frac{\pi}{2}or\ 4A=\frac{3\pi}{2}[/tex]

________________________________________________________

Solve the trigonometric equation to find a general solution

[tex]4A=\frac{\pi}{2}+2n\pi \ or\\ \\ 4A=\frac{3 \pi}{2}+2n \pi\\ \\A=\frac{\pi}{8}+\frac{n \pi}{4\\}[/tex]

________________________________________________________

cos(-2A/2) = 0

Reduce the fraction

[tex]cos(-A)=0[/tex]

________________________________________________________

Simplify the expression using the symmetry of trigonometric function

[tex]cosA=0[/tex]

________________________________________________________

Solve the trigonometric equation to find a particular solution

[tex]A=\frac{\pi }{2}\ or\ A=\frac{3 \pi}{2}[/tex]

________________________________________________________

Solve the trigonometric equation to find a general solution

[tex]A=\frac{\pi}{2}+2n\pi\ or\ A=\frac{3\pi}{2}+2n\pi,n\in\ Z[/tex]

________________________________________________________

Find the union of solution sets

[tex]A=\frac{\pi}{2}+n\pi[/tex]

________________________________________________________

A = π/8 + nπ/4 or A = π/2 + nπ, n ∈ Z

Find the union of solution sets

[tex]A=\frac{\pi}{8}+\frac{n\pi}{4}\ or\ A=\frac{\pi}{2}+n\pi ,n\in Z[/tex]

I hope this helps you

:)