Respuesta :

Answer:

Step-by-step explanation:

1.  x -> opposite side of 48°

   o → hypotenuse

   b → adjacent side of  48°

[tex]\sf Sin \ 48^\circ = \dfrac{opposite \ side }{hypotenuse}\\\\\\0.7431 = \dfrac{15}{o}\\\\\\0.74 * o = 15\\\\\\ o = \dfrac{15}{0.74}\\\\\\[/tex]

o = 20.27

[tex]\sf cos \ 48^\circ = \dfrac{adjacent \ side }{hypotenuse}\\\\\\0.67 =\dfrac{b}{o}\\\\\\0.67=\dfrac{b}{20.27}[/tex]

b = 0.67*20.27

b = 13.58

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

2) i → opposite side of 25°

n → adjacent side of 25°

[tex]\sf Sin \ 25 =\dfrac{i}{t}\\\\\\0.42=\dfrac{i}{30}\\\\\\0.42*30=i[/tex]

i = 12.6

[tex]\sf Cos \ 30^\circ =\dfrac{n}{t}\\\\0.91=\dfrac{n}{30}\\\\\\0.91*30 = n[/tex]

n = 27.3

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

3) a → opposite side of 70°

e → adjacent side of 70°

[tex]Sin \ 70^\circ =\dfrac{a}{l}\\\\0.94 =\dfrac{a}{25}\\\\0.94*25=a[/tex]

a = 23.5

[tex]\sf Cos \ 70^\circ =\dfrac{e}{l}\\\\0.34=\dfrac{e}{25}\\\\0.34*25=e[/tex]

e = 8.5

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

4)

[tex]\sf Sin \ 52^\circ = \dfrac{x}{75}\\\\0.79*75=x\\[/tex]

x = 59.25

[tex]\sf Cos \ 52^\circ = \dfrac{z}{75}\\\\0.62*75 =z[/tex]

z = 46.5