Triangles LMN and NWR are right triangles. What is
the length of NW?
24 cm
1.
10 cm
6
>W
R

Find RW then use Pythagorean theorem
So
Answer:
NW = 15.6 cm
Step-by-step explanation:
If ΔLMN ~ ΔNWR then:
[tex]\sf LN : LM = RN : RW[/tex]
[tex]\implies \sf \dfrac{LN}{LM}=\dfrac{RN}{RW}[/tex]
[tex]\implies \sf \dfrac{10}{24}=\dfrac{6}{RW}[/tex]
[tex]\implies \sf 10RW=6 \cdot 24[/tex]
[tex]\implies \sf RW = 14.4\:cm[/tex]
Find NW by using Pythagoras' Theorem:
[tex]a^2+b^2=c^2[/tex]
(where a and b are the legs, and c is the hypotenuse, of a right triangle)
Given:
Substituting the given values into the formula and solving for NW:
[tex]\implies \sf 6^2+14.4^2=NW^2[/tex]
[tex]\implies \sf NW^2=243.36[/tex]
[tex]\implies \sf NW=\sqrt{243.36}[/tex]
[tex]\implies \sf NW=15.6\:cm[/tex]