Respuesta :
Answer:
- Plain Wrapping Paper : $10
- Holiday Wrapping Paper : $23
Step-by-step explanation:
Let :
- Plain wrapping paper = x
- Holiday wrapping paper = y
Equations
- 2x + y = 43 (Equation 1)
- 7x + y = 93 (Equation 2)
Subtract : (2) - (1)
- 7x + y - 2x - y = 93 - 43
- 5x = 50
- x = 10
Finding y
- 2(10) + y = 43
- 20 + y = 43
- y = 23
Plain Wrapping Paper : $10
Holiday Wrapping Paper : $23
Answer:
Cost per roll of plain wrapping paper = $10
Cost per roll of holiday wrapping paper = $23
Step-by-step explanation:
Let p = cost of a roll of plain wrapping paper
Let h = cost of a roll of holiday wrapping paper
Given:
- Brandy sold 2 rolls of plain wrapping paper and 1 roll of holiday wrapping paper for a total of $43
⇒ 2p + h = 43
Given:
- Jennifer sold 7 rolls of plain wrapping paper and 1 roll of holiday wrapping paper for a total of $93
⇒ 7p + h = 93
System of Linear Equations
Equation 1: 2p + h = 43
Equation 2: 7p + h = 93
To solve, subtract Equation 1 from Equation 2 to eliminate h:
⇒ 5p = 50
⇒ 5p ÷ 5 = 50 ÷ 5
⇒ p = 10
Substitute found value of p into Equation 1 and solve for h:
⇒ 2(10) + h = 43
⇒ 20 + h = 43
⇒ 20 + h - 20 = 43 - 20
⇒ h = 23
Cost per roll of plain wrapping paper = $10
Cost per roll of holiday wrapping paper = $23