Respuesta :

Answer:

[tex]\Longrightarrow: \boxed{\sf{-\dfrac{4}{3} }}[/tex]

Step-by-step explanation:

To find:

  • The slope of the line that passes through the points.

Note:

  • Use the slope formula.

[tex]\underline{\text{SLOPE FORMULA:}}[/tex]

[tex]\Longrightarrow: \sf{\dfrac{y_2-y_1}{x_2-x_1}=\dfrac{RISE}{RUN} }[/tex]

  • y₂=(-20)
  • y₁=0
  • x₂=21
  • x₁=6

[tex]\Longrightarrow: \sf{\dfrac{(-20)-0}{21-6}}[/tex]

Solve.

[tex]\sf{\dfrac{-20-0}{21-6}=\dfrac{-20}{15}=\dfrac{-20\div5}{15\div5}=\dfrac{-4}{3}=\boxed{\sf{-\dfrac{4}{3}}}[/tex]

  • Therefore, the slope is -4/3, which is our answer.

I hope this helps. Let me know if you have any questions.

slope: -4/3

slope: (y2-y1)/(x2-x1)

  • where (x1, y1), (x2, y2) are coordinates

Here slope:

  • (-20-0)/(21-6)
  • -20/15
  • -4/3