Respuesta :
Answer:
[tex]\Longrightarrow: \boxed{\sf{-\dfrac{4}{3} }}[/tex]
Step-by-step explanation:
To find:
- The slope of the line that passes through the points.
Note:
- Use the slope formula.
[tex]\underline{\text{SLOPE FORMULA:}}[/tex]
[tex]\Longrightarrow: \sf{\dfrac{y_2-y_1}{x_2-x_1}=\dfrac{RISE}{RUN} }[/tex]
- y₂=(-20)
- y₁=0
- x₂=21
- x₁=6
[tex]\Longrightarrow: \sf{\dfrac{(-20)-0}{21-6}}[/tex]
Solve.
[tex]\sf{\dfrac{-20-0}{21-6}=\dfrac{-20}{15}=\dfrac{-20\div5}{15\div5}=\dfrac{-4}{3}=\boxed{\sf{-\dfrac{4}{3}}}[/tex]
- Therefore, the slope is -4/3, which is our answer.
I hope this helps. Let me know if you have any questions.
slope: -4/3
slope: (y2-y1)/(x2-x1)
- where (x1, y1), (x2, y2) are coordinates
Here slope:
- (-20-0)/(21-6)
- -20/15
- -4/3