We are given
Clearly, the shape of the earth is a sphere. Thus, to determine the volume of the earth, we will use a formula that determines the volume of a sphere.
[tex]\implies \text{Volume of sphere =} \ \dfrac{4\pi r^{3}}{3}[/tex]
When we substitute the radius in the formula, we get;
[tex]\implies\text{Volume of sphere} = \dfrac{4\pi (640)^{3}}{3}[/tex]
[tex]\implies\text{Volume of sphere} = \dfrac{4\pi (640)(640)(640)}{3}[/tex]
Take π as 3.14
[tex]\implies\text{Volume of sphere} = \dfrac{4\pi (640)(640)(640)}{3}[/tex]
[tex]\implies \text{Volume of sphere} = \dfrac{4(3.14)(640)(640)(640)}{3}[/tex]
Simplify the numerator;
[tex]\implies \text{Volume of sphere} = \dfrac{4(3.14)(640)(640)(640)}{3}[/tex]
[tex]\implies \text{Volume of sphere} = \dfrac{3292528640}{3}[/tex]
Divide the numerator by 3;
[tex]\implies \text{Volume of sphere} = \dfrac{3292528640}{3}[/tex]
[tex]\implies \text{Volume of sphere} = \boxed{1097509546.67 \ \text{m}^{3} } \ \ \ (\text{Estimated})[/tex]