Respuesta :

Answer:

  2. center: (2, 5); radius: 3; Area: 9π; Circumference: 6π

  4. center: (0, 0); radius: 8; Area: 64π; Circumference: 16π

Step-by-step explanation:

The standard form equation for a circle is ...

  (x -h)² +(y -k)² = r² . . . . . . center (h, k), radius r

The value of r is used in the formulas for area (A) and circumference (C):

  A = πr²

  C = 2πr

__

2.

Comparing the given equation to the standard form, we see ...

  (x -h)² +(y -k)² =

  (x -2)² +(y -5)² = 9

  (h, k) = (2, 5) . . . . center

  r² = 9

This tells us ...

  r = √9 = 3 . . . . radius

The Area formula uses r² directly:

  Area = πr² = π(9)

  Area = 9π

The Circumference formula uses r:

  Circumference = 2π(3)

  Circumference = 6π

__

4.

Comparing the given equation to the standard form, we find ...

  (h, k) = (0, 0) . . . . center

  r² = 64   ⇒   r = √64 = 8 . . . . radius

  Area = 64π

  Circumference = 2π(8) = 16π

#2

  • (x-2)²+(y-5)²=9
  • (x-2)²+(y-5)²=3²

Radius=3

Circumference

  • 2π(3)
  • 6π units

Area

  • πr²
  • 3²π
  • 9π units²

#4

  • x²+y²=64
  • x²+y²=8²

Radius=8

Circumference

  • 2π(8)
  • 16π units

Area

  • πr²
  • π(8)²
  • 64π units ²