Respuesta :
Answer:
1820 ways
Explanation:
Use combination method. where order does not matter.
[tex]\sf _n C_r=\dfrac{n !}{r ! (n-r) !}[/tex] : combination formula
Solve:
[tex]\sf \bold{\cdot}} \ _{16} C_4[/tex]
[tex]\sf \bold{ \cdot} \ \dfrac{16!}{4!(16-4)!}[/tex]
[tex]\sf \bold{ \cdot} \ \dfrac{16!}{4! \ x \ 12!}[/tex]
[tex]\sf \bold{ \cdot} \ 1820[/tex]
Answer:
1820 ways
Step-by-step explanation:
Formula of a combination
- [tex]^{n}C_{r} = \frac{n!}{(n-r)!r!}[/tex]
Here, n = 16 and r = 4.
Solving
- ¹⁶C₄
- 16! / 12! 4!
- 16 x 15 x 14 x 13 x 12! / 12! x 4 x 3 x 2 x 1
- 16 x 15 x 14 x 13 / 24
- 2 x 5 x 14 x 13
- 10 x 182
- 1820 ways