Respuesta :

Answer:

[tex]x=\dfrac{29}{20}[/tex]

Step-by-step explanation:

[tex]16^{\frac{1}{5}} \cdot 2^x=8^{\frac{3}{4}}[/tex]

Prime factorisation of 16:

16 ÷ 2 = 8

8 ÷ 2 = 4

4 ÷ 2 = 2

⇒ 16 = 2⁴

Prime factorisation of 8:

8 ÷ 2 = 4

4 ÷ 2 = 2

⇒ 8 = 2³

Substitute  16 for 2⁴  and  8 for 2³:

[tex]\begin{aligned}16^{\frac{1}{5}} \cdot 2^x &=8^{\frac{3}{4}}\\\implies (2^4)^{\frac{1}{5}} \cdot 2^x &=(2^3)^{\frac{3}{4}}\end{aligned}[/tex]

[tex]\textsf{Apply exponent rule} \quad (a^b)^c=a^{bc}:[/tex]

[tex]\implies 2^{\frac{4}{5}} \cdot 2^x=2^{\frac{9}{4}}[/tex]

[tex]\textsf{Apply exponent rule} \quad a^b \cdot a^c=a^{b+c}:[/tex]

[tex]\implies 2^{\frac{4}{5}+x}=2^{\frac{9}{4}}[/tex]

[tex]\textsf{Apply exponent rule} \quad a^b=a^c \implies b=c:[/tex]

[tex]\implies \dfrac{4}{5}+x=\dfrac{9}{4}[/tex]

Subject 4/5 from both sides:

[tex]\implies x=\dfrac{29}{20}[/tex]