Respuesta :

Answer :

Option B

Step by step explanation :

As we can see in figure, Triangle is right angled at A

In ∆ABC

By Pythagoras theorem,

BC² = AC² + AB²

=> BC² = (3)² + (4)²

=> BC² = 9 + 16

=> BC² = 25

=> BC = 5 cm

We know,

[tex]\:\mathsf{Area \:of\: triangle}[/tex]=[tex]\:\mathsf{\frac{1}{2}\: x\: base\: x\: height}[/tex]

Here,

base = AC = 3cm

height = AB = 4cm

=> [tex]\:\mathsf{Area \:of\: triangle}[/tex]=[tex]\:\mathsf{\frac{1}{2} \:x\: 3cm\: x\:4cm}[/tex]

=> [tex]\:\mathsf{Area \:of\: triangle\: = \:3cm\: x\: 2cm}[/tex]

=> [tex]\:\bf\boxed{Area \:of\: triangle\: = \:6cm²}[/tex]

As BC = DE

And then BD = EC

it shows the property of rectangle

So BD = 6 cm

Now,

[tex]\:\mathsf{Area \:of\: rectangle\: =\: length \:x\: width}[/tex]

=> Area of rectangle = 6cm x 5cm

=> [tex]\:\bf\boxed{Area\: of\: rectangle\: = \:30cm²}[/tex]

Now,

Area of the figure = Area of rectangle + Area of triangle

=> Area of the figure = 30cm² + 6cm²

=> [tex]\:\bf\boxed{Area\: of\: the\: figure\: = \:36cm²}[/tex]

Therefore, option B is the correct answer for this question.

Ver imagen GlimmeryEyes