Respuesta :

kkfoug

Answer:

V = 288.5 [tex]yd^{3}[/tex]

Step-by-step explanation:

To find the volume of a cone, use this equation:

[tex]V = \pi r^{2}\frac{h}{3}[/tex]

r = radius

h = height

We aren't given the height of the cone, just the length of the side. To find the height use the Pythagorean Theorem:

[tex]a^{2}+ b^{2}= c^{2}[/tex]

The value of 12.1 yds is the hypotenuse and the radius is the value of one of the legs. So, set it up like this:

[tex]a^{2}+5^{2} =12.1^{2}[/tex]

Now, solve:

[tex]a^{2}+25= 146.41[/tex]                   Distribute the square

[tex]a^{2} = 121.41[/tex]                           Subtract 25 from 146.41

[tex]\sqrt{a^{2} }=\sqrt{121.41}[/tex]

a = 11.01862

So, the height is equal to 11.01862 yds.

Now, we can plug everything into the volume equation:

[tex]V = \pi (5)^{2}\frac{11.01862}{3}[/tex]

Simplify (use calculator):

V = 288.5 [tex]yd^{3}[/tex]

So, the volume of the cone is equal to 288.5   [tex]yd^{3}[/tex]