n = 20
s = 18
H₀: σ² ≤ 384
H‎ₐ: σ₂ > 384

The null hypothesis is to be tested at the 5% level of significance. Give the critical value(s) from the table.
(no table is provided with the question)

A. 30.144
B. 31.410
C. 9.591 and 34.170
D. 8.907 and 32.852

Respuesta :

Answer:

A. 30.144

Step-by-step explanation:

This is a Chi-Squared test

Given:

  • [tex]n=20[/tex]
  • [tex]s=18[/tex]
  • [tex]\textsf{H}_0:\sigma^2=384[/tex]
  • [tex]\textsf{H}_1:\sigma^2 > 384[/tex]
  • The significance level is 5%, so [tex]\alpha= 0.05[/tex]

To use the Chi-Square distribution table, you need to know two values:

  • Degrees of freedom = (n - 1)
  • Significance level

Degrees of Freedom = n - 1 = 20 - 1 = 19

The significance level is 5%, so [tex]\alpha= 0.05[/tex]

This is a one-tailed test since [tex]\textsf{H}_1:\sigma^2 > 384[/tex] so Upper tail area = 0.05

Reading from the table (attached), the critical value is:  30.144

(This means that we reject [tex]\textsf{H}_0[/tex] if the test statistic is greater than 30.144)

Ver imagen semsee45