Answer:
18.4 years
Step-by-step explanation:
The compound interest formula:
[tex]A=P(1+\frac{r}{n} )^{nt}[/tex]
For this problem we have
[tex]P= 2000\\r= 0.06\\n= 4\\A= 2000(3)= 6000[/tex]
We plug our numbers...
[tex]6,000= 2,000(1+\frac{0.06}{4} )^{4t} \\[/tex]
Then divide
[tex]6,000/2,000=3[/tex]
[tex]3= (1.015)^{4t}[/tex]
Apply log both sides
[tex]3log=(1.015) 4tlog[/tex]
Solve for t
[tex]t= \frac{3log}{(4log(1.015))} =18.4 years[/tex]