Respuesta :

Answer:

x = 15

∠AOB = 15°

∠BOC = 165°

Step-by-step explanation:

Angles on a straight line add up to 180°

[tex]\sf \implies \angle AOB + \angle BOC=180[/tex]

Substitute the given expressions for the angles:

[tex]\sf \implies (2x - 15) + 11x = 180[/tex]

Collect and combine like terms:

[tex]\sf \implies 2x +11x- 15=180[/tex]

[tex]\sf \implies 13x- 15=180[/tex]

Add 15 to both sides:

[tex]\sf \implies 13x- 15+15=180+15[/tex]

[tex]\sf \implies 13x=195[/tex]

Divide both sides by 13:

[tex]\sf \implies \dfrac{13x}{13}=\dfrac{195}{13}[/tex]

[tex]\sf \implies x=15[/tex]

Now substitute the found value of x into the expressions for each angle:

[tex]\sf \implies \angle AOB =2(15)-15=15^{\circ}[/tex]

[tex]\sf \implies \angle BOC =11(15)=165^{\circ}[/tex]