Respuesta :

Let's solve this problem step-by-step:

First, let's set up the point-slope form:

 ⇒ [tex](y-y_1)=m(x-x_1)[/tex]

  • (x₁,y₁) ==> point on the line
  • m      ==> value of slope of the line

Let's examine what we are given:

  • (-2,9) ==> point on the line
  • -8      ==> slope of the line

Let's plug in all the known values in the point-slope form:

 [tex](y-9)=-8(x+2)[/tex]

To convert from point-slope form to slope-intercept form:

 ⇒ must solve for 'y'

     ⇒ (in other words) must isolate y to one side and everything else to  

         the other side

Let's solve:

 [tex](y-9)=-8(x+2)\\y-9=-8x-16\\y=-8x-7[/tex]

Answer: y= -8x - 7

Hope that helps!

Hi student, let me help you out! :)

....................................................................................................................................

We are asked to find the slope intercept equation for the line that passes through [tex]\pmb{(-2,9)}[/tex] and has a slope of [tex]\pmb{-8}[/tex].

[tex]\triangle~\fbox{\bf{KEY:}}[/tex]

  • The slope is the number before x (in slope intercept form)

Here's the slope intercept equation:

[tex]\dag~\mathtt{y=mx+b}[/tex] (slope is denoted as "m")

So, substitute -8 for m:

[tex]\dag~\mathtt{y=-8x+b}[/tex]

|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Now, let's find the y intercept, which is b.

Here's how it's done:

Remember the point that the line contains, (-2,9)?

Well, let's substitute its y-coordinate, 9, for y:

[tex]\dag~\mathtt{9=-8x+b}[/tex]

Do the same thing with its x-coordinate, -2, only substitute it for x:

[tex]\dag~\mathtt{9=-8(-2)+b}[/tex]

Upon simplifying,

[tex]\dag~\mathtt{9=16+b}[/tex]

Solve for b.

[tex]\dag~\mathtt{9-16=b}[/tex]

[tex]\dag~\underline{\mathtt{b=-7}}[/tex]

Thus, the equation is [tex]\bigstar~\underline{\boxed{\mathrm{y=-8x-7}}}[/tex].

Hope it helps you out! :D

Ask in comments if any queries arise.

#StudyWithBrainly

~Just a smiley person helping fellow students :)

[tex]\overline{\underline{~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~}}[/tex]