Respuesta :

[tex]\\ \rm\Rrightarrow \sqrt{75k^99}[/tex]

[tex]\\ \rm\Rrightarrow \sqrt{5^2\times 3k^93^2}[/tex]

[tex]\\ \rm\Rrightarrow 5\sqrt{3}k^{\frac{9}{2}}\times 3[/tex]

[tex]\\ \rm\Rrightarrow 15\sqrt{3}k^{\frac{9}{2}}[/tex]

Answer:

[tex]15k^{4} \sqrt{3k}[/tex]

Step-by-step explanation:

Given :

[tex]\sqrt{75\times k^{9}\times9 }[/tex]

Simplifying the radical :

[tex]\sqrt{5^{2} \times 3 \times (k^{4})^{2} \times k \times 3^{2} }[/tex]

[tex]5 \times k^{4} \times 3 \sqrt{3 \times k}[/tex]

[tex]15k^{4} \sqrt{3k}[/tex]