[tex]\\ \rm\Rrightarrow \sqrt{75k^99}[/tex]
[tex]\\ \rm\Rrightarrow \sqrt{5^2\times 3k^93^2}[/tex]
[tex]\\ \rm\Rrightarrow 5\sqrt{3}k^{\frac{9}{2}}\times 3[/tex]
[tex]\\ \rm\Rrightarrow 15\sqrt{3}k^{\frac{9}{2}}[/tex]
Answer:
[tex]15k^{4} \sqrt{3k}[/tex]
Step-by-step explanation:
Given :
[tex]\sqrt{75\times k^{9}\times9 }[/tex]
Simplifying the radical :
[tex]\sqrt{5^{2} \times 3 \times (k^{4})^{2} \times k \times 3^{2} }[/tex]
[tex]5 \times k^{4} \times 3 \sqrt{3 \times k}[/tex]
[tex]15k^{4} \sqrt{3k}[/tex]