Each vertical cross-section of the triangular prism shown below is an isosceles triangle.What is the slant height, 8, of the triangular prism?

Step-by-step explanation:
Given: h(height) = 5
b(breadth) = 4
Therefore, Using Pythagoras theorem:
[tex](slant \: height)² = {h}^{2} + {b}^{2} \\ \: \: \: \: \: \: \: = {5}^{2} + {4}^{2} \\ \: \: \: = 25 + 16 \\ \: \: \: \: \: \: \: \: \: = (41)²[/tex]
= 1681
Hope it helps
Answer: 5.4 units
Using Pythagoras Theorem:
a² + b² = c²
Here given following:
a = 2
b = 5
c = slant height
Solve for s:
s² = 2² + 5²
s² = 4 + 25
s² = 29
s = √29 = 5.38 ≈ 5.4 (rounded to nearest tenth)