1) Reflecting over y=x means [tex](x, y) \longrightarrow (y,x)[/tex]. So, the coordinates of the image are:
[tex]V(-3, 0) \longrightarrow V'(0,-3)\\\\W(-1,0) \longrightarrow W'(0, -1)\\\\U(-2,-5) \longrightarrow U'(-5,-2)\\\\X(3,-3) \longrightarrow X'(-3, 3)[/tex]
2) Rotating 90 degrees counterclockwise about the origin means [tex](x,y) \longrightarrow (-y,x)[/tex], so the vertices of the image are:
[tex]W(0,-1) \longrightarrow W'(1,0)\\\\X(3,-1) \longrightarrow X'(1, 3)\\\\V(0,-3) \longrightarrow V'(3,0)\\\\Y(1, -5) \longrightarrow Y'(5, 1)[/tex]
3) The vertices of the image are:
[tex]C(2,0) \longrightarrow C'(-2, -2)\\\\D(2, 5) \longrightarrow D'(-2, 3)\\\\E(5,4) \longrightarrow E'(1, 2)[/tex]