Respuesta :

Explanation:

Let the recurring decimal be x

==========================

x = 0.216216216216...

1000x = 216.216216...

1000x - x = 216

999x = 216

x = 216/999

x = 8/37

Answer:

Let x equal the recurring decimal:

[tex]\sf Equation\:1: \quad x=0.216216216...[/tex]

Create another number with recurring 216s by multiplying the above expression by 1000:

[tex]\sf Equation\:2: \quad 1000x=216.216216...[/tex]

Subtract Equation 1 from Equation 2 to eliminate the recurring digits after the decimal:

[tex]\sf \implies 1000x-x=216.216216...-0.216216...[/tex]

[tex]\sf \implies 999x=216[/tex]

Divide both sides by 999:

[tex]\sf \implies \dfrac{999x}{999}=\dfrac{216}{999}[/tex]

[tex]\sf \implies x=\dfrac{216}{999}[/tex]

Simplify:

[tex]\sf \implies x=\dfrac{216 \div 27}{999 \div 27}=\dfrac{8}{37}[/tex]