By Factorization, the values of x are a+b/2 and a-b/2
Factorization is an algebraic simplification process that involves taking out the common factors of a given Algebraic expression.
Analysis:
4[tex]x^{2}[/tex] -(4ax - [tex]a^{2}[/tex]+ [tex]b^{2}[/tex]) = 0
4[tex]x^{2}[/tex] -4ax + [tex]a^{2}[/tex] -[tex]b^{2}[/tex] = 0
4[tex]x^{2}[/tex] -2ax -2ax + [tex]a^{2}[/tex] -b2 = 0
2x(2x-a) -a(2x -a) - [tex]b^{2}[/tex] = 0
(2x-a)(2x-a) - [tex]b^{2}[/tex] = 0
[tex](2x-a)^{2}[/tex] - [tex]b^{2}[/tex] = 0
difference of two squares
((2x-a) + b)((2x-a - b) =0
2x -a + b = 0 or 2x -a - b = 0
2x = a - b or 2x = a + b
x = a-b/2 or a + b/2
In conclusion, the values of x are a-b/2 and a+b/2.
Learn more about factorization of algebraic equations: brainly.com/question/9781037
#SPJ1