Answer:
Step-by-step explanation:
[tex]if A+B=45\\tan(A+B)=tan(45)\\\dfrac{tanA+tanB}{1-tanA.tanB}=1\\ \implies tanA+tanB=1-tanA.tanB\\\frac{1}{cotA}+\frac{1}{cotB}=1-\frac{1}{cotA}\frac{1}{cotB}, \{tanX=\dfrac{1}{cotX} \}\\ cotA+cotB=cotA.cotB-1\\cotA.cotB-cotA-cotB=1.[/tex]