Respuesta :

Answer:

9.62 cm²

Step-by-step explanation:

Area of sector

 diameter = 7 cm

              r = 7 ÷2 = 3.5 cm

             Ф = 45°

  [tex]\sf \boxed{\text{\bf Area of sector = $\dfrac{\theta}{360}*\pi r^2$}}[/tex]  

                              [tex]\sf =\dfrac{45}{360}*3.14*3.5*3.5\\\\ = 4.81 \ cm^2[/tex]

Area of the given sectors = 2 *4.81

                                           = 9.62 cm²

                           

Hello!

Let's solve this in step

Let's find the circular region to the left of the center:

  [tex]Area = \frac{45}{360}*Area_.formuka_.of_.Circle =\\ Area = \frac{45}{360}*\pi (radius)^2\\ Area = \frac{45}{360} *\pi (3.5)^2\\Area=4.81[/tex]

Now let's find the circular region to the right of the center

 ⇒ the angle 45° by the vertical angle theorem is equal to the angle  

      opposite it in the other circular region

     ⇒ has the same area as the left region

Total Area = 4.81 + 4.81 = 9.62 cm²

Answer: 9.62 square centimeters

Hopefully that helps!