The required distance AB is given by .[tex]\sqrt{17}[/tex]
What is transformation?
Transformation, is process which is used to change the position of the bor shapes.
Since, coordinate of A(0,0) B(1,4)
After transformation T: (x, y) (x + 2, y + 1) of A, B it become A'(2, 1), B '(3,5)
Now,
Distance = √(x2-x1)^2+(y2-y1)^2
AB = [tex]\sqrt{(x_2-x_1)^2+(y_2-y_1)^2}[/tex] ; A'B' = [tex]\sqrt{(x_2-x_1)^2+(y_2-y_1)^2}[/tex] ;
A(0,0) B(1,4) A'(2, 1), B '(3,5)
AB= [tex]\sqrt{(1-0)^2+(4-0)^2}[/tex] A'B'= [tex]\sqrt{(3-2)^2+(5-1)^2}[/tex]
AB= √17 A'B' = √17
Thus, the required distance AB and A'B' = √17.
Learn more about Transformation here:
https://brainly.com/question/11709244
#SPJ1