Which statement is correct?
(2.06 times 10 Superscript negative 2 Baseline) (1.88 times 10 Superscript negative 1 Baseline) less-than StartFraction 7.69 times 10 Superscript negative 2 Baseline Over 2.3 times 10 Superscript negative 5 Baseline EndFraction
(2.06 times 10 Superscript negative 2 Baseline) (1.88 times 10 Superscript negative 1 Baseline) greater-than-or-equal-to StartFraction 7.69 times 10 Superscript negative 2 Baseline Over 2.3 times 10 Superscript negative 5 Baseline EndFraction
(2.06 times 10 Superscript negative 2 Baseline) (1.88 times 10 Superscript negative 1 Baseline) greater-than StartFraction 7.69 times 10 Superscript negative 2 Baseline Over 2.3 times 10 Superscript negative 5 Baseline EndFraction
(2.06 times 10 Superscript negative 2 Baseline) (1.88 times 10 Superscript negative 1 Baseline) = StartFraction 7.69 times 10 Superscript negative 2 Baseline Over 2.3 times 10 Superscript negative 5 Baseline EndFraction

Respuesta :

The correct statement is [tex](2.06 * 10^{-2})(1.88 * 10^{-1}) < \frac{7.69 * 10^{-2}}{2.3* 10^{-5}}[/tex]

How to determine the correct statement?

The proper form of the question is added as an attachment

The expressions are given as:

[tex](2.06 * 10^{-2})(1.88 * 10^{-1})[/tex]

[tex]\frac{7.69 * 10^{-2}}{2.3* 10^{-5}}[/tex]

Evaluate both expressions

[tex](2.06 * 10^{-2})(1.88 * 10^{-1}) = 2.06 * 1.88 * 10^{-2-1}[/tex]

[tex](2.06 * 10^{-2})(1.88 * 10^{-1}) = 3.87 * 10^{-3[/tex]

[tex]\frac{7.69 * 10^{-2}}{2.3* 10^{-5}} = \frac{7.69}{1.88} * 10^{5-2[/tex]

[tex]\frac{7.69 * 10^{-2}}{2.3* 10^{-5}} = 4.09 * 10^3[/tex]

By comparing both expressions, we have:

[tex]3.87 * 10^{-3} < 4.09 * 10^3[/tex]

This means that:

[tex](2.06 * 10^{-2})(1.88 * 10^{-1}) < \frac{7.69 * 10^{-2}}{2.3* 10^{-5}}[/tex]

Hence, the correct statement is [tex](2.06 * 10^{-2})(1.88 * 10^{-1}) < \frac{7.69 * 10^{-2}}{2.3* 10^{-5}}[/tex]

Read more about inequalities at:

https://brainly.com/question/25275758

#SPJ1

Ver imagen MrRoyal