find the solution B=√2+√3-√2-√3

Answer:
[tex]B=\sqrt{2}[/tex]
Step-by-step explanation:
Original equation:
[tex]B = \sqrt{2+\sqrt{3}} - \sqrt{2 - \sqrt{3}}\\[/tex]
Square both sides:
[tex]B^2=(\sqrt{2+\sqrt{3}})^2 + 2(\sqrt{2+\sqrt{3}} * (-\sqrt{2 - \sqrt{3}}) + (-\sqrt{2-\sqrt{3}})^2[/tex]
Cancel out the square roots and squares:
[tex]B^2=2+\sqrt{3}}+ 2(\sqrt{2+\sqrt{3}} * (-\sqrt{2 - \sqrt{3}}) + 2-\sqrt{3}[/tex]
Add the sqrt(3) and -sqrt(3) as well as 2 and 2
[tex]B^2=4 + 2(\sqrt{2+\sqrt{3}} * (-\sqrt{2 - \sqrt{3}})[/tex]
Use the identity: [tex]\sqrt{a} * \sqrt{b} = \sqrt{a * b}[/tex] to rewrite the two square roots being multiplied:
[tex]B^2=4 + 2(-\sqrt{(2+\sqrt{3}) * (2 - \sqrt{3}}))[/tex]
Use difference of squares: [tex](a-b)(a+b) = a^2-b^2[/tex]
[tex]B^2=4 + 2(-\sqrt{2^2-\sqrt{3}^2})[/tex]
Square both sides
[tex]B^2=4 + 2(-\sqrt{4-3})[/tex]
Subtract:
[tex]B^2=4 + 2(-\sqrt{1})[/tex]
Evaluate square root of 1:
[tex]B^2=4 + 2(-1)[/tex]
Multiply
[tex]B^2=4 -2[/tex]
Subtract
[tex]B^2=2[/tex]
Take square root of both sides:
[tex]B=\sqrt{2}[/tex]