Respuesta :

Answer:

For the function [tex]$f(x)=4 x-3$[/tex] the average rate change from x is equal 1 to x is equal 2 is 4 .

Step-by-step explanation:

A function is given f(x)=4x-3.

It is required to find the average rate change of the function from x is 1 to x is 2 . simplify.

Step 1 of 2

A function f(x)=4 x-3 is given.

Determine the function [tex]$f\left(x_{1}\right)$[/tex] by putting the value of x=1 in the given function.

[tex]$\begin{aligned}&f(1)=4(1)-3 \\&f(1)=1\end{aligned}$$f(1)=1$[/tex]

Determine the function [tex]$f\left(x_{1}\right)$[/tex] by putting the value of x is 2 in the given function.

[tex]$\begin{aligned}&f(2)=4(2)-3 \\&f(2)=5\end{aligned}$[/tex]

Step 2 of 2

According to the formula of average rate change of the equation [tex]$\frac{\Delta y}{\Delta x}=\frac{f\left(x_{2}\right)-f\left(x_{2}\right)}{x_{2}-x_{1}}$[/tex]

Substitute the value of [tex]$f\left(x_{1}\right)$[/tex] with, [tex]$f\left(x_{1}\right)$[/tex] with [tex]$3, x_{2}$[/tex] with 2 and [tex]$x_{1}$[/tex] with 1 .

[tex]$\begin{aligned}&\frac{\Delta y}{\Delta x}=\frac{5-1}{1} \\&\frac{\Delta y}{\Delta x}=4\end{aligned}$[/tex]