Respuesta :

Answer:

The evaluated function for the indicated values is given below.

The value of f(-3) is 20 .

The value of f(2) is 10 .

The value of f(-a) is [tex]$2|-3 a-1|$[/tex].

The value of -f(a) is [tex]$-2|3 a-1|$[/tex].

The value of f(a+h) is [tex]$2|3 a+3 h-1|$[/tex].

Step-by-step explanation:

A function [tex]$f(x)=2|3 x-1|$[/tex] is given.

It is required to evaluate the function at [tex]$f(-3) ; f(2) ; f(-a) ;-f(a) ; f(a+h)$[/tex].

To evaluate the function, substitute the indicated values in the given function to determine the output values and simplify the expression.

Step 1 of 5

The given function is [tex]$f(x)=2|3 x-1|$[/tex].

To evaluate the function at f(-3), substitute -3 in the given function [tex]f(x)=2|3 x-1|$\\ $f(-3)=2|3(-3)-1|$\\ $f(-3)=2|-9-1|$\\ $f(-3)=2|-10|$\\ $f(-3)=2(10)$\\ $f(-3)=20$[/tex]

Step 2 of 5

To evaluate the function at $f(2)$, substitute 2 in the given function.

[tex]f(x)=2|3 x-1|$\\ $f(2)=2|3(2)-1|$\\ $f(2)=2|6-1|$\\ $f(2)=2(5)$\\ $f(2)=10$[/tex]

Step 3 of 5

To evaluate the function at f(-a), substitute -a in the given function.

[tex]$\begin{aligned}&f(x)=2|3 x-1| \\&f(-a)=2|3(-a)-1| \\&f(-a)=2|-3 a-1|\end{aligned}$[/tex]

Step 4 of 5

To evaluate the function at -f(a), substitute a in the given function.

[tex]f(x)=2|3 x-1|$\\ $-f(a)=-2|3(a)-1|$\\ $-f(a)=-2|3 a-1|$[/tex]

Step 5 of 5

To evaluate the function at f(a+h), substitute a+h in the given function. [tex]$f(x)=2|3 x-1|$[/tex]

[tex]$\begin{aligned}&f(a+h)=2|3(a+h)-1| \\&f(a+h)=2|3 a+3 h-1|\end{aligned}$[/tex]