A triangle can be formed having side lengths $4,$ $5,$ and $8.$ It is impossible, however, to construct a triangle with side lengths $4,$ $5,$ and $10.$ Using the side lengths $2,$ $3,$ $5,$ $7,$ and $11,$ how many different triangles with exactly two equal sides can be formed

Respuesta :

14  triangles with exactly two equal sides can be formed

The triangles will be isosceles as there have to be 2 equal sides.

The possible triangles are :

2 2 3      3 3 2        5 5 2       7 7 2         11  11  2

             3 3 5        5 5 3       7 7 3         11  11  3

                             5 5 7       7 7 5         11  11  5

                                            7 7 11       11  11  7

So 14   triangles are possible

To know more about triangles visit: https://brainly.com/question/1058720

#SPJ4