Respuesta :

The smallest possible value of a in the given function is 1/5.

Value of f(3)

From the given function, the value of f(3) is calculated as follows;

f(x)=ax² +  [tex]\frac{2}{a} x[/tex]

f(3) = a(3)² + [tex]\frac{2}{a}(3)[/tex]

f(3) = 9a + 6/a

Value of f(2)

f(x)=ax² +  [tex]\frac{2}{a} x[/tex]

f(2) = a(2²) + [tex]\frac{2}{a} (2)[/tex]

f(2) = 4a + 4/a

f(3) – f(2) = 11

(9a + 6/a)  - ( 4a + 4/a) = 11

9a + 6/a - 4a - 4/a = 11

5a + 2/a = 11

multiply through with "a"

5a² + 2 = 11a

5a² - 11a + 2 = 0

5a² - 10a - a + 2 = 0

5a(a - 2) - 1(a - 2) = 0

(5a - 1)(a - 2) = 0

a = 2,  or

5a = 1

a = 1/5

Thus, the smallest possible value of a in the given function is 1/5.

Learn more about functions here: https://brainly.com/question/2833285

#SPJ1