Solve to find x and y in the diagram.

The figure shows two parallel lines and a transversal. The intersection of the first line and the transversal forms four angles, the bottom right angle measures 5 times x plus 4 times y degrees. The intersection of the second line and the transversal forms four angles, the top right angle is labeled as a right angle, the bottom right angle measures 12 times y degrees.

Respuesta :

Considering the given information in the question, the value of x is [tex]12^{o}[/tex], and that of y is [tex]7.5^{o}[/tex].

A transversal is a line that cuts through two given parallel lines. Thus it intersects each parallel line at a point, forming four angles each.

From the given information in the question, it can be inferred that:

the given bottom right angle of the first intersection and the bottom right angle with the second intersection are congruent (corresponding angle property).

So that,

[tex](5x+4y)^{o}[/tex] = [tex](12y)^{o}[/tex]

[tex]5x^{o}[/tex] = [tex]12y^{o}[/tex] - [tex]4y^{o}[/tex]

[tex]5x^{o}[/tex] = [tex]8y^{o}[/tex]............ 1

Also given that the top right angle at the second intersection is a right angle, then;

    [tex]12y^{o}[/tex] + [tex]90^{o}[/tex] = [tex]180^{o}[/tex] (sum of angles on a straight line)

This implies that;

    [tex]12y^{o}[/tex] = [tex]180^{o}[/tex] -    [tex]90^{o}[/tex]

       [tex]12y^{o}[/tex]  =     [tex]90^{o}[/tex]

So that,

y = [tex]\frac{90}{12}[/tex]

y = [tex]7.5^{o}[/tex]

Thus substituting the value of y in equation 1, we have;

[tex]5x^{o}[/tex] = [tex]8y^{o}[/tex]........ 1

     = 8(7.5)

5x = 60

x = [tex]\frac{60}{5}[/tex]

x = [tex]12^{o}[/tex]

Therefore, x = [tex]12^{o}[/tex] and y = [tex]7.5^{o}[/tex]

For more clarification on a transversal of two parallel lines, check: https://brainly.com/question/1751268

#SPJ1

Kindly contact a 1-on-1 tutor if more explanations are needed.

Ver imagen olayemiolakunle65