Respuesta :

The approximate 95 % confidence interval for p is found by the formula

p^ ±  Z∝/2 √p^q^/n

The sample size n can be found by the

The formula

n= (Z∝/2)² p^q^/e²

The approximate 95 % confidence interval for p is 0.165; 0.243

This indicates 95 % confidence interval level.

A sample of 6239 nonprofits should be surveyed

Solution

Part a:

Sample Proportion p^= 84/412= 0.2038 ≅ 0.204

q^ = 1-p^= 1.0 -0.204= 0.796

The degree of confidence is 95% so  z∝/2= 1.96

Putting the values

p^ ±  Z∝/2 √p^q^/n

0.204 ±  1.96 √0.204(0.796)/ 412

0.204 ± 0.0389

0.1650 ; 0.2429

0.165; 0.243

The approximate 95 % confidence interval for p is 0.165; 0.243

Part B

This indicates 95 % confidence interval level.

Part C

With ± 0.01 of 0.95  Confidence interval gives range  0.94 to 0.96

For 0.96  interval Z∝/2 = 2.054

For 0.94  interval Z∝/2 = 1.8808

and error  e= 0.01

For solving n  the formula is

n= (Z∝/2)² p^q^/e²

and e= 0.01

Putting the values

n= 1.96²(0.204)(0.796)/ 0.01²

n= 6238.1437≅ 6238.14

A sample of 6239 nonprofits should be surveyed.

#SPJ1

For further understanding click

https://brainly.com/question/15712887