ayuda necesito resolver este problema con procedimiento ;)

[tex]x^3-2x^2+x-1[/tex] is one of the prime factors of the polynomial
The question implies that we determine one of the prime factors of the polynomial.
The polynomial is given as:
[tex]x^8 - 3x^6 + x^4 - 2x^3 - 1[/tex]
Expand the polynomial by adding 0's in the form of +a - a
[tex]x^8 - 3x^6 + x^4 - 2x^3 - 1 = x^8 -2x^7 + 2x^7 - 4x^6 +x^6 + 2x^5 -2x^5- 3x^4 + 4x^4 + 2x^3 -6x^3+2x^3- x^2 -3x^2 +4x^2-2x+2x-1[/tex]
Rearrange the terms
[tex]x^8 - 3x^6 + x^4 - 2x^3 - 1 = x^8 -2x^7 + 2x^5 - 3x^4 + 2x^3 - x^2 + 2x^7 - 4x^6 + 4x^4 -6x^3+4x^2-2x+x^6-2x^5+2x^3-3x^2+2x-1[/tex]
Factorize the expression
[tex]x^8 - 3x^6 + x^4 - 2x^3 - 1 = x^2(x^6-2x^5+2x^3-3x^2+2x-1) + 2x(x^6-2x^5+2x^3-3x^2+2x-1) + 1(x^6-2x^5+2x^3-3x^2+2x-1)[/tex]
Factor out x^6-2x^5+2x^3-3x^2+2x-1
[tex]x^8 - 3x^6 + x^4 - 2x^3 - 1 = (x^2+2x + 1)(x^6-2x^5+2x^3-3x^2+2x-1)[/tex]
Express x^2 + 2x + 1 as a perfect square
[tex]x^8 - 3x^6 + x^4 - 2x^3 - 1 = (x+1)^2(x^6-2x^5+2x^3-3x^2+2x-1)[/tex]
Expand the polynomial by adding 0's in the form of +a - a
[tex]x^8 - 3x^6 + x^4 - 2x^3 - 1 = (x+1)^2(x^6- 2x^5+x^4-x^4-x^3 +x^3-2x^3-x^2 -2x^2 +x+x - 1)[/tex]
Rearrange the terms
[tex]x^8 - 3x^6 + x^4 - 2x^3 - 1 = (x+1)^2(x^6- 2x^5+x^4-x^3-x^4-2x^3-x^2+x+x^3-2x^2 +x - 1)[/tex]
Factorize the expression
[tex]x^8 - 3x^6 + x^4 - 2x^3 - 1 = (x+1)^2(x^3(x^3-2x^2+x-1) -x(x^3-2x^2+x-1)+1(x^3-2x^2+x-1))[/tex]
Factor out x^3-2x^2+x-1
[tex]x^8 - 3x^6 + x^4 - 2x^3 - 1 = (x+1)^2(x^3 -x+1)(x^3-2x^2+x-1)[/tex]
One of the factors of the above polynomial is [tex]x^3-2x^2+x-1[/tex].
This is the same as the option (c)
Hence, [tex]x^3-2x^2+x-1[/tex] is one of the prime factors of the polynomial
Read more about polynomials at:
https://brainly.com/question/4142886
#SPJ1