Respuesta :

Answer:

[tex]1,\!000\; {\rm kg}[/tex].

Explanation:

The "[tex]g[/tex]" given in the question likely refers to the strength of the gravitational field. The standard unit of [tex]g[/tex] is [tex]{\rm m \cdot s^{-2}}[/tex], same as the standard unit of acceleration. However, since [tex]1\; {\rm N} = 1\; {\rm kg \cdot m \cdot s^{-2}[/tex], the standard unit of [tex]g[/tex] is equivalent to [tex]{\rm N \cdot kg^{-1}}[/tex].

For instance, the gravitational strength on the surface of the earth is approximately [tex]g = 10\; {\rm N \cdot kg^{-1}}[/tex]. However, the question did not specify the unit of this value.

If the mass of an object is [tex]m[/tex], the weight of that object would be [tex](\text{weight}) = m\, g[/tex] when the gravitational field strength around that object is [tex]g[/tex]. It is given that for the object in this question, [tex]m\, g = (\text{weight}) = 10,\!000\; {\rm N}[/tex] when [tex]g = 10\; {\rm N \cdot kg^{-1}}[/tex]. Therefore, the mass [tex]m\![/tex] of this object would be:

[tex]\begin{aligned}m &= \frac{(\text{weight})}{g} \\ &= \frac{10,\!000\; {\rm N}}{10\; {\rm N \cdot kg^{-1}}} \\ &= 1,\! 000\; {\rm kg}\end{aligned}[/tex].