Respuesta :

The inverse function of [tex]f(x) = -\frac 12\sqrt{x + 3}[/tex] is[tex]f^{-1}(x) = 4x^2- 3[/tex]

How to determine the inverse function?

The function is given as:

[tex]f(x) = -\frac 12\sqrt{x + 3}[/tex]

Rewrite as;

[tex]y = -\frac 12\sqrt{x + 3}[/tex]

Swap the positions of x and y

[tex]x = -\frac 12\sqrt{y + 3}[/tex]

Multiply through by -2

[tex]-2x = \sqrt{y + 3}[/tex]

Square both sides

4x^2 = y + 3

Subtract 3 from both sides

y = 4x^2 - 3

Express as an inverse function

[tex]f^{-1}(x) = 4x^2- 3[/tex]

Hence, the inverse function of [tex]f(x) = -\frac 12\sqrt{x + 3}[/tex] is[tex]f^{-1}(x) = 4x^2- 3[/tex]

Read more about inverse function at:

https://brainly.com/question/2541698

#SPJ1