NO LINKS!!!! What is the transformation of f (x)= x^3:

PART 4:

THIS IS NOT MULTIPLE CHOICE!!!!

10. f(x)= (x+5)^3

11. f(x)= (1/5x)^3


12. f(x)= (-x)^3​

NO LINKS What is the transformation of f x x3PART 4THIS IS NOT MULTIPLE CHOICE10 fx x5311 fx 15x312 fx x3 class=

Respuesta :

Answer:

10.  Left 5

11.   Horizontal stretch by a factor of 5

12.  Horizontal reflection

Step-by-step explanation:

Transformations of Graphs (functions) is the process by which a function is moved or resized to produce a variation of the original (parent) function.

Transformations

For a > 0

[tex]f(x+a) \implies f(x) \: \textsf{translated}\:a\:\textsf{units left}[/tex]

[tex]f(x-a) \implies f(x) \: \textsf{translated}\:a\:\textsf{units right}[/tex]

[tex]f(x)+a \implies f(x) \: \textsf{translated}\:a\:\textsf{units up}[/tex]

[tex]f(x)-a \implies f(x) \: \textsf{translated}\:a\:\textsf{units down}[/tex]

[tex]y=a\:f(x) \implies f(x) \: \textsf{stretched parallel to the y-axis (vertically) by a factor of}\:a[/tex]

[tex]y=f(ax) \implies f(x) \: \textsf{stretched parallel to the x-axis (horizontally) by a factor of} \: \dfrac{1}{a}[/tex]

[tex]y=-f(x) \implies f(x) \: \textsf{reflected in the} \: x \textsf{-axis}[/tex]

[tex]y=f(-x) \implies f(x) \: \textsf{reflected in the} \: y \textsf{-axis}[/tex]

Identify the transformations that take the parent function to the given function.

Question 10

[tex]\textsf{Parent function}: \quad f(x)=x^3[/tex]

[tex]\textsf{Given function}: \quad f(x)=(x+5)^3[/tex]

Comparing the parent function with the given function, we can see that 5 has been added to the x-value of the parent function.

Therefore, the transformation is:

[tex]f(x+5) \implies f(x) \: \textsf{translated}\:5\:\textsf{units left}[/tex]

Question 11

[tex]\textsf{Parent function}: \quad f(x)=x^3[/tex]

[tex]\textsf{Given function}: \quad f(x)=\left(\dfrac{1}{5}x\right)^3[/tex]

Comparing the parent function with the given function, we can see that the x-value of the parent function has been multiplied by ¹/₅.

Therefore, the transformation is:

[tex]y=f\left(\dfrac{1}{5}x\right) \implies f(x) \: \textsf{stretched parallel to the x-axis (horizontally) by a factor of} \: \dfrac{1}{\frac{1}{5}}[/tex][tex]\textsf{As }\dfrac{1}{\frac{1}{5}}=5 \implies \textsf{horizontal stretch by a factor of 5}[/tex]

Question 12

[tex]\textsf{Parent function}: \quad f(x)=x^3[/tex]

[tex]\textsf{Given function}: \quad f(x)=(-x)^3[/tex]

Comparing the parent function with the given function, we can see that the x-value of the parent function has been multiplied by -1.

Therefore, the transformation is:

[tex]y=f(-x) \implies f(x) \: \textsf{reflected in the} \: y \textsf{-axis}[/tex]

Learn more about graph transformations here:

https://brainly.com/question/27845947